If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2+16b+19=0
a = 3; b = 16; c = +19;
Δ = b2-4ac
Δ = 162-4·3·19
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{7}}{2*3}=\frac{-16-2\sqrt{7}}{6} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{7}}{2*3}=\frac{-16+2\sqrt{7}}{6} $
| Y=7x+203 | | –4b–25=b+9 | | u+(-10)=14 | | 3b^2+16b+19=5b^2 | | x+31=5x-5 | | 2t=7t−10 | | 72=3w+6w | | 4c-3=15 | | 125m-100m+40,600=39,000-175m | | 2x+4=10-4 | | –3f=–4f−8 | | 97=8.75x+2 | | 3=v/9 | | -6.7=-2.7+-2q | | -3x+2=4x-6 | | (7-x)(x+4)=0 | | 8-3x-1=3(2x+3)-8 | | 7h=9h−8 | | x/39=12/13 | | –6−6h=–5h | | 5x+7x=50 | | -4x=x-5 | | -5x+2(x-6)=-27 | | x/14=9/7 | | 5j+10=–10+10j | | 4+v=12 | | 5.3g+10=2.3g+22 | | 7m+9=6m | | 2x+6+(4x)=180 | | 3/x-3=4 | | 2v=90 | | 8+z=4−3z |